
Electrical Engineering and Informatics II
Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

Simplification of the Real-Time
Network Traffic Monitoring

Adrián PEKÁR, Juraj GIERTL, Martin RÉVÉS, Peter FECIĽAK

Department of Computers and Informatics, FEI TU of Košice, Slovak Republic

adrian.pekar@gmail.com, juraj.giertl@tuke.sk, martin.reves@tuke.sk,
peter.fecilak@tuke.sk

Abstract – This paper deals with real-time monitoring of network traffic, it introduces
the Analyzer-Collector Protocol and its Application Programmable Interface. Particular
attention is given to the BasicMeter measuring tool and the explanation, why are tools like
BasicMeter so important in modern networks.

Keywords – real-time monitoring, network traffic, QoS, API, ACP, BasicMeter, ACPapi,
exporter, collector, analyzer

I. INTRODUCTION

Today’s computer networks, which are based on the best-effort traffic model, are designed to
transmit video, sound and data (or some combination of these traffic types) at the same time. This
kind of transmission is provided by converged networks, which instead of setting own separate
links for data and voice, make do with only one converged link. However, in these networks, to
get the desired quality of the applications sensible to latency (e.g. Voice over Internet Protocol -
VoIP, Video on Demand - VoD), we need to ensure a given level of Quality of Services (QoS).

The phrase QoS is binded to a set of parameters (packet rate, packet loss, one way delay, jitter,
round-trip time, etc.), which are used to define the characteristics of computer network traffic.
With measuring these parameters, we can ensure the functionality of the above mentioned real-
time applications, the fulfillment of conditions specified in the Service Level Agreement (SLA),
prevent network attacks, find out dominate traffic sources, etc. Therefore, real-time monitoring
of QoS parameters has a significant role in the administration of converged networks and their
services.

By means of Analyzer-Collector Protocol [1], the BasicMeter tool [2] was designed for mea-
suring network parameters and their real-time computing. While the implementation of real-
time data collection and computation is in some cases really problematic, there was a need for
an Application Programmable Interface for servicing the Analyzer-Collector Protocol (ACPapi).
ACPapi was designed to simplify the work of the programmers during the development of real-
time data dependent applications. Its main purpose is to serve the ACP, which gives opportunities
for communication between the parts of the BM tool, whereby the programmers do not have to
care for the implementation details of this communication.

In the following sections an alternative method for real-time network traffic monitoring is
presented, starting with a simple introduction of the BasicMeter tool; following with a detailed
description of the Analyzer-Collector Protocol and its communication principles; up to the pre-
sentation of the ACPapi and its basic implementation details.

II. THE BASICMETER MEASURING TOOL

The architecture of the tool was developed in the Computer Network Laboratory at the Technical
University of Kosice within three sub-projects:

• BEEM − Basicmter Exporting and Measuring process
• JXColl − Java XML Collector
• BM Analyzer − BasicMeter Analyzer
Regarding to the roles of these projects (BEEM, JXColl, BM Analyzer), in the following they

will be specified as the exporter, collector and analyzer.
The concept of the BasicMeter tool, as described in Figure 1, is in conformance to the IPFIX

architecture [3].
Analyzer is a front-end interface, which cares about both, the visualization of the computed

data and the control of the architecture’s lower parts. However, the analyzer itself is not a part

ISBN xxx-xx-xxx-xxxx-x c© 2011 FEI TUKE 1



Electrical Engineering and Informatics II
Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

Fig. 1: The architecture of the BasicMeter measuring tool

of the IPFIX architecture, therefore we had to draft and implement our own network protocols
for servicing the communication between the analyzer and the other parts of the measuring tool.
These protocols are the Analyzer-Collector Protocol (ACP) and the Analyzer-Exporter Protocol
(AEP).

AEP was proposed to control the connection between the analyzer and the exporter. With AEP,
it is possible to operate the behavior of the export process directly from the customers’ application.

In the primary concept of the tool, the measured data should be stored in a database for later
analyzes. However, in the case of real-time data computation this method is absolutely inapt. With
the growth of data in the database, the processing of the queries is becoming more and more
time-consuming. For this reason there was a need for choosing an other way to gain data about
network traffic without the ineffective access to the database. Ad hoc was developed the ACP,
which allows effective computation of data between the collector and the analyzer. The collector
is permanently storing data in the database and if needed, it is simultaneously sending exactly
the same data (or a part of it) to the analyzer by the means of ACP.

III. ANALYZER-COLLECTOR PROTOCOL

ACP is a binary, application layer protocol. TCP is used for communication, but it could be
easily replaced with any other reliable, connection-oriented protocol. The communication is bi-
directional and works on the base of client-server model, while the client side is represented by
analyzer and the server side is represented by the collector. As it was mentioned in the previous
section, the primary function of the protocol is to gain network traffic data with avoiding the
ineffective database queries. To achieve this, besides data, control messages are also transmitted,
which are dedicated for format and accuracy checkout of received data by the analyzer.

Communication Principle

The communication is based on sending queries by the analyzer and sending replies with data
by the collector. This type of communication could be easily illustrated by a Finite State Machine
(FSM) of both sides. The particular communication phases are represented with machine’s states
at which every message has its own unique ID.

Figure 2a and 2b depict the state transitions of Analyzer-Collector Protocol. State graph in
Figure 2a is representing a Mealy type Finite State Machine. Figure 2b is describing a Moore
Machine. For the reason that the outputs of the Moore Machine are representing the particular
activities of the Analyzer (e.g. receiving data), they are not present in Figure 2b. For easier
understanding of state transitions from old states to new states, the messages that invoke these
transitions are also included in Table 1 and 2.

ACP is forwarding:
• data (0)
• control messages (1)

Types of the control messages:
• (A) − authentication
• (0) − setting template
• (1) − setting filter

ISBN xxx-xx-xxx-xxxx-x c© 2011 FEI TUKE 2



Electrical Engineering and Informatics II
Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

• (2) − suspending data transmission
• (3) − resuming data transmission
• (4) − setting data transmission type
• (5) − acknowledging received data

States of the ACP:
• S1 − start
• S2 − waiting
• S3 − receiving
• S4 − transmitting
• S5 − suspended
• S6 − stop

Messages sent by analyzer:
• A 0 (A 1) − incorrect (correct) authentication data
• 0 0 (0 1) − incorrect (correct) template
• 1 0 (1 1) − incorrect (correct) filter
• 2 0 (2 1) − data transmission unsuccessfully (successfully) suspended
• 3 0 (3 1) − data transmission unsuccessfully (successfully) resumed
• 4 0 (4 1) − not supported (accepted) data transmission type
• 5 − acknowledging the received data

Messages sent by collector:
• 0 − unsuccessful authentication in state S1 (after established connection), the requested

template was rejected in state S1

• 1 − successful authentication in state S2 (after established connection), the requested template
was accepted in state S2

• 10 (11) − filter not accepted (accepted)
• 20 (21) − suspension of data transmission was rejected (accepted)
• 30 (31) − resume of data transmission was rejected (accepted)
• 40 (41) − not supported data transmission type (data transmission type is supported and also

accepted)

Table 1: State transitions - collector side

OldState IncomMsgID OutgoMsgID NewState

S1
A 0 0 S6

A 1 1 S2

S2
0 0 0 S2

0 1 1 S4

S4

0 0 0 S4

0 1 1 S4

1 0 10 S4

1 1 11 S4

2 0 20 S4

2 1 21 S5

4 0 40 S4

4 1 41 S4

5 - S4

S5
3 0 30 S5

3 1 31 S4

S6 - - -

Table 2: State transitions - analyzer side

OldState OutgoMsgID IncomMsgID NewState

S1
A 0 0 S6

A 1 1 S2

S2
0 0 0 S2

0 1 1 S3

S3

0 0 0 S3

0 1 1 S3

1 0 10 S3

1 1 11 S3

2 0 20 S3

2 1 21 S5

4 0 40 S3

4 1 41 S3

5 - S3

S5
3 0 30 S5

3 1 31 S3

S6 - - -

Description of the Communication

The FSM graphs (Figure 2a and 2b) and the tables (Table 1 and 2) clearly describe the
communication via ACP’s control messages between the collector and the analyzer. Control
messages sent by collector act only as replies to requests generated by the analyzer. However data
transmission is running through the same connection, from one point of view it represents the
collector’s special autonomous activity, which is initiated by the receive of IP flow information
from the exporter(s). Regarding to desired simplicity and efficiency of the protocol, the header of
the control messages is differing from the header of the data in one byte (value 1 for the control
message and value 0 for data).

At the initial state, the collector is awaiting the analyzer’s connection at a pre-agreed port
(default value for collector is 2138). If there are no problems during the connection establishment,
both sides traverse to their S1 states. Before the bi-directional communication can be opened,
the analyzer has to send accurate authentication information to the collector. Therefore as soon
as the connection is established, the analyzer sends its login and MD5 password ciphers to the

ISBN xxx-xx-xxx-xxxx-x c© 2011 FEI TUKE 3



Electrical Engineering and Informatics II
Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

(a) Collector side (b) Analyzer side

Fig. 2: State transitions

collector. Successful authentication brings both sides to their S2 states, but if the authentication
is unsuccessful, the collector terminates the connection and the analyzer have to reconnect for an
other try.

In S2 state, the collector is awaiting the analyzer’s setting of the template message (message
0), which informs the collector about the desired format of the data. At the current state of the
ACP, templates are sent as arrays containing the IDs of the information elements, but in the future
we count with replacing the arrays with a binary description of these elements. After receiving
the template the collector replies with its acceptance (message 1) or rejection (message 0). If the
template was rejected, the analyzer has to send another template. During this phase, unless the
collector accepts the template and replies with accept message, the communication is suspended. If
the template is accepted, the collector traverses to its S4 state and starts with the data transmission
in the format of the accepted template. On the other hand, after the analyzer receives the template
accepted message, it immediately traverses to its S3 state and starts to receive the data from
the collector. In this phase the template could be changed at any time, and if it is accepted by
the collector, the data would be sent in the format of the new template. Real data, which were
received/sent by the analyzer/collector, besides control messages are sent only in states S3 and
S4.

By default, collector exports all the traffic information obtained from the exporter(s). However,
in a case of need, by setting the filter (message 1) it is also possible to receive only specific
information. This is an optional step which is accepted by the collector only in its S4 state, while
only one filter can be set in a given time. Current flow filtering is supported upon the next criteria:

• IP address of the measuring point.
– Format of the criterion: (A.B.C.D/n), where 0≤n≤32;

• Source and destination IP address/mask − with the combination of IP address and mask it
is possible to specify not only one specific host, but also a whole subnet. It is also possible
to specify more subnets or hosts.

– Format of the criterion: (A.B.C.D/n; A.B.C.D/n - A.B.C.D/n; A.B.C.D/n , A.B.C.D/n),
where 0≤n≤32;

• Source and destination port − this criterion is allowing to specify upon the transport layer
port number also a specific type of network traffic. It is also possible to set more values and
range of values.

– Format of the criterion: (N; N - N; N, N), where N can be a well known port, registered
port and dynamic or private port;

• Protocol − currently the recognition is supported by numbers and like in the case of port
criterion, it is possible to set random combination of values and range of values.

– Format of the criterion: (N; N - N; N, N), where N can be any of the known protocol
numbers;

The collector is using message 11 to confirm the accepted filter, and message 10 to inform
about the filters rejection. The filter can be canceled or replaced with empty filter rule in the
collectors S4 state.

ISBN xxx-xx-xxx-xxxx-x c© 2011 FEI TUKE 4



Electrical Engineering and Informatics II
Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

Control message with ID 4 is used to set the type of the data transmission, which brings more
customizability and convenience for the developers using the ACPapi to communicate with the
collector. Currently ACP supports two types of data transmission:

• sending the data by collector in N-tuples (message 1), where N is the number of the
information elements in obtained template

• sending the data by collector one-by-one (message 2)
By default, the collector sends the data in N-tuples, ergo during one cycle of data reception

the analyzer receives N values. This type of data transmission can be changed optionally in the
collector’s S4 state. With second type of data transmission the analyzer receives one value during
one data reception cycle.

There are another two control messages, which are dedicated for suspending and resuming the
data transmission. In S4 state the collector receives the data transmission suspension message
(message 2). The receive of this message causes that the collector sends every data from the
currently processed packet, suspends the data transmission and replies with message ID 21, which
informs the analyzer about the transfer suspension. Both sides of the communication traverse to
their S5 states. From here on, the analyzer won’t receive any data. The only method to continue
with data transmission is to send the collector the data transfer resume message (message 3),
which brings both sides to their previous states. After this message, the collector replies with
acceptance message (ID 31) and starts to transmit data from the actual packet received from the
exporter(s). Before this message, the analyzer will not continue with receiving data. In general,
there is no reason for the collector to discard the transfer suspension (message 20) or resume
(message 30) request.

The last control message is destined for synchronizing the data sending/receive by the collec-
tor/analyzer. When the collector sends the data, it awaits acceptance from the other side. Unless
this acceptance is obtained, the collector will not send any other data. With this method we can
prevent receiving inappropriate data (from experience, without this control message the collector
sent in some cases concatenated values, which could easily led to data computation errors).

IV. APPLICATION PROGRAMMABLE INTERFACE FOR SERVICING THE
ANALYZER-COLLECTOR PROTOCOL (ACPAPI)

The language chosen was the Java language, which main advantages are in modularity, stability,
perspicuity of the source codes, ability of the documentation auto-generation, etc. Except these
advantages, Java was chosen also for the reason that the collector was written in Java too. Some of
the methods will be used by both parts of the communication, hence of that the implementation in
the same language is more preferable to the implementation in different languages. As mentioned
before, the ACPapi has to be usable in the case, when the programmers do not want to waste time
with designing and implementing their own classes or methods for the communication based on
ACP. For this reason, the whole ACPapi was designed as an easy to understand, implement and
use API, besides during its creation was also given a tone to its exact documentation and to the
annotation of the source code.

An API can be written by means of classes or interfaces. According to [5] the most profound
feature of Java interfaces is multiple inheritance. With multiple inheritance, you need just one
object to implement an unlimited number of interfaces from an API. In the case of classes, you
would need to create one subclass for each API class, and if these classes are related to one
another, join their instances by means of delegation. This can significantly increase the amount
of occupied memory.

On the basis of this knowledge the ACPapi was written by the means of interfaces, which main
advantage expresses in the performance of the final application using ACPapi. On the contrary,
with interfaces we also have to count with adding new methods only by filling in the source code.

Because of the above mentioned dual-usability of some methods, the ACPapi was divided into
two packages:

• ACPapi package − contains the API interface itself with declarations of the methods, classes
with definitions of the methods and other classes

• commonly used package − contains commonly used classes of the analyzer and the collector
(classes for working with templates and filters)

Functions defined by Analyzer-Collector Protocol (sending authentication data, templates, fil-
ters, etc.) are named upon their functionality. These functions with short description (detailed
description could be found in the Communication Description subsection) are the following:

• getMd5Digest − method for cipher login and password data
• connectToCollector − method for establishing the connection with the collector
• sendTemplate − method for setting the desired format of the received data

ISBN xxx-xx-xxx-xxxx-x c© 2011 FEI TUKE 5



Electrical Engineering and Informatics II
Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

• sendFilter − method for setting filter rules
• SendPause,sendUnPause − methods for suspending or resuming the data transmission
• readCollectorAnswers − method for computing the data sent by the collector
• quit − method for correct termination of the ACP process
• sendTransferType − method for setting the type of the data transmission
Main function of the ACPapi is its data providing for almost real-time computation. The word

’almost’ points to the fact, that receiving data by ACPapi brings a certain delay with itself, which
results from the data computation by the exporter, their transmission over the network, further
computation by the collector and sending them by ACP. Despite of that, from the point of real-time
monitoring of network traffic, this delay is absolutely affordable.

Obtaining the data with ACPapi could be implemented in some ways. One method could be
storing the data in some data structure (e.g. arrays). Another method could be reading the incoming
messages and data in a cycle. Even though that the first method is more comfortable, from the point
of real-time data computation the second method was chosen. By reason of proper customizability
this method is not part of the ACPapi and is provided only as a design pattern (the source code
of the design pattern could be found at the API’s website - http://wiki.cnl.sk/Monica/ACPapi).
Of course, the data could be obtained by other methods, but all of them need a thorough study
of the ACP and its API.

Forasmuch as the protocol is defined for communication of both sides, it has to be supported
by the collector too. However, a more detailed description of ACP support by collector is out
of the scope of this paper. In a case of need, one can find more information about this on the
projects website.

V. CONCLUSION

Actual researches and developments on the field of monitoring tools are leading to the im-
provement of their ability of measuring the main characteristics of network traffic. Besides the
main effort is put on the maximization of their real-time data monitoring ability. An important
feature of these tools is also their flexibility and ability of supporting a wide scale of complex
applications. The BasicMeter measuring tool is focusing to the fulfillment of these requirements,
which above all is served for measuring QoS parameters.

In the previous sections the main concept of the BasicMeter tool and its method of getting data
for (almost) real-time computation by ACPapi was presented. The Application Programmable
Interface for servicing the Analyzer-Collector Protocol fulfilled its goals. Its implementation
brought its awaited results. Thanks to the proposed design pattern and some improvements to
the ACP (setting transfer type or acknowledging the received data) the ACPapi gives reliable,
easy to use and implement application interface for the developers of the BasicMeter measuring
tool.

Future work should be aimed at the replacement of the actual design pattern of ACPapi and to
the optimization of the templates by replacing the arrays with a common binary description of
the information elements.

ACKNOWLEDGMENT

This work is the result of the project implementation: Center of Information and Communica-
tion Technologies for Knowledge Systems (ITMS project code: 26220120030) supported by the
Research & Development Operational Program funded by the ERDF.

REFERENCES

[1] F. Jakab, R. Jakab, M. Kaščák, and J. Giertl, “Improving Efficiency and Manageability in IPFIX Network Monitoring
Platform,” Proc. of the 6th International Network Conference, INC 2006, Plymouth, UK, 11.-14.7.2006, Plymouth,
University of Plymouth, 2006, 6th., pp. 81-88, ISBN 1-84102-157-1.

[2] F. Jakab, Ľ. Koščo, M. Potocký, and J. Giertl, “Contribution to QoS Parameters Measurement: The BasicMeter
Project,” in Conference proceedings of the 4th International Conference on Emerging e-learning Technologies and
Applications ICETA 2005, vol. 4, pp. 371–377, 2005.

[3] G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek, “Architecture for IP Flow Information Export,” Internet
Engineering Task Force, RFC 5470 (Informational), March 2009. [Online]. Available: http://www.ietf.org/rfc/
rfc5470.txt

[4] A. Pekár, “Podpora pre monitorovanie prevádzkových charakteristı́k siete v reálnom čase,” Master’s thesis, KPI FEI
TU Košice.

[5] J. Tulach, Practical API Design: Confessions of a Java Framework Architect. Apress, 2008.

ISBN xxx-xx-xxx-xxxx-x c© 2011 FEI TUKE 6

http://www.ietf.org/rfc/rfc5470.txt
http://www.ietf.org/rfc/rfc5470.txt

	Introduction
	The BasicMeter Measuring Tool
	Analyzer-Collector Protocol
	Application Programmable Interface for Servicing the Analyzer-Collector Protocol (ACPapi)
	Conclusion
	References

